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In this paper the molecular dynamics method has been extended to include constraints in 
order, to permit the computer simulation of molecular systems with strong intramolecular 
bonding. In this constraint dynamics method the units of each molecule are spatially adjusted 
to keep a preassigned geometry. The method has been tested for reliability, efficiency and 
accuracy on a simulation of H,O microsystem. The important conservation laws (e.g., energy, 
momentum and angular momentum) are satisfied. 

1. INTRODUCTION 

The method of molecular dynamics (MD) [ 1 ] has been successfully applied to the 
study of simple non-polar liquids [2, 31, liquid metals [4], molecular liquids [S], ionic 
liquids 161, water [7] and melting phenomena [8,9]. The speed of an MD calculation 
can be increased by reducing the number of degrees of freedom. In a polyatomic 
system, the fast internal vibrations are usually decoupled from the rotational and 
translational motions. They can be frozen by applying constraint dynamics, so that 
the bond lengths and angles are kept fixed at a constant value during the MD run. 
For example, a nitrogen molecule becomes a rod, a water molecule a rigid triangle 
and butane (C,H,,) a non-rigid solid with one internal rotation [ 10, 7, 111. This 
method has been proposed by Ryckaert et al. [ 121 for integrating the Cartesian 
equations of motion of a system of particles subject to holonomic constraints. van 
Gunsteren and Berendsen [ 131 used this method for macromolecules. 

In principle the properties of a collection of N classical particles can be obtained 
by solving the set of N equations of motion 

rnis - F,(ri . . . rN) = 0, 

where i = 1, 2,..., N, m is the mass and F and r are the force and position vectors, 
respectively. This is the basis of the MD calculation. In constraint dynamics these 
equations of motion are solved together with holonomic constraints on the coor- 
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dinates of the particle. The condition of constraint can be expressed as equations 
connecting of the particles (at a given time) by: 

ck(r,, rz ,..., t) = 0. (2) 

These constraints maintain the preassigned relationship within a given set of particles 
during the time evolution of the system. A simple form of such constraints can be 
expressed in the’ following way [ 141: 

dh - (ri(t) - rj(t))’ = 0, (3) 

where d, is the length of the rigid bond between the particles i andj. 
In constraint dynamics the equations of motion become 

2 

mig-Fi-Gi=O, (4) 

where Gi is the force due to I constraints ck involving the ith particle and can be 
written in terms of Lagrangian multipliers 1,; 

Gi = - ’ L,(t) V/C,. 
k:l 

(5) 

In Section 2 we shall develop a method of solving Eq. (3) by using the leapfrog 
algorithm. In Section 3 we have proposed a new constraint equation: 

dij - d(ri(t) - rj(t))’ = 0. (6) 

The relative efficiency of method I, consisting of the leapfrog scheme for Eqs. (3) to 
(5), and method II, consisting of the leapfrog scheme for Eqs. (4) to (6), are analysed 
in detail in Section 4 for a model water-like microsystem in three-dimensional space. 

2. LEAPFROG ALGORITHM FOR CONSTRAINT DYNAMICS 

The leapfrog algorithm is usually more efficient than Verlet or Beeman algorithms 
] 15 ]. It requires fewer operations and less storage and the energy conservation is 
better satisfied. A molecular dynamics program based on the leapfrog method has 
been written by Eastwood et al. [ 161. They have also described the procedures to 
calculate energy, pressure, etc., from the positions and velocities of the particles in the 
system. Here we shall discuss the modifications necessary to implement the leapfrog 
algorithm in the constraint dynamics equations (4) and (5). 

In the leapfrog method the velocity, ii of the ith particle at discrete timestep n + f 
is calculated using the velocity of the particle at previous timestep IZ - i and the 
contribution from the forces, i.e., 

ii(n + ;) = ii@ - +) + (F,(n) + Gi(n))dt/mi, (7) 
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where At is the fixed timestep and m, is the mass of the particle i. The position of the 
particle is calculated at timestep n + 1 from its position at previous timestep n and its 
velocity at time level n + f, i.e., 

ri(n + 1) = r,(n) + ii@ + f) At. (8) 

If constraint forces Gi given by Eq. (5) are used in Eq. (7) to calculate the trajectory 
we see that the constraints (Eq. (2)) are satisfied only to the first order in At. This 
error in constraints will grow with time. Ryckaert et al. [12] has developed a very 
elegant method for the Verlet algorithm, where the Lagrange multipliers at time n are 
determined by requiring that the constraints remain exactly fulfilled at time n + 1. 
This gives an error in the trajectory calculation of the same order as the error implicit 
in the algorithm, yet the constraints are perfectly fulfilled at each time level. To incor- 
porate this in Eqs. (7) and (8) we rewrite these equations in the following form: 

ii +F,(n)$+Sri(n+ l)/At, 
l 

(9) 

ri(n + 1) = ri(n) + ii(n + f) At, (10) 

(11) 

where yk are obtained from constraint equation 

Ck((ti(n + l)})=O. (12) 

For ease of calculation we express Eqs. (9) in terms of unconstrained (primed) and 
constrained (unprimed) quantities. So 

ri(n + 1) = r:(n + 1) + 6ri(n + l), 

i:(n + 4) = i,(n - i) + F,(n) At/m,, 

(13) 

(14) 

r;(n + 1) = r,(n) + C;(n + i) At. (15) 

Finally yk can be calculated by using Eqs. (1 1 ), (13) and the constraint Eq. ( 12), i.e., 

ck((r:(n + 1) + Jri(n + 1))) = 0. (16) 

Ryckaert et al. ] 121 have already obtained the following explicit equations for the 
rigid constraints of the type given by Eq. (3). 

ck= [r;(n+ l)+&,(n+ l)+r(i(n+ l)-6r,#r+ l)]‘-&=O (17) 
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hi = - !!i!Y (’ y,(r,(n) - r,(n)). 
mi kTl 

(18) 

In Section 4 we shall apply these equations (( 13 to (15) and (17)) to simulate a 
system of water molecules constrained to form rigid triangles. 

3. A NEW RIGID CONSTRAINT 

In the last section we saw that for the rigid constraint equations (17) used in 
Ryckaert et al. [ 121 one has to.solve the simultaneous quadratic equations (17) and 
(18). These equations can be viewed as a particular point of a four-dimensional hyper 
surface which is analogous to a parabola in two-dimensional space. The iterative 
procedure generally used to solve such equations (the Newton iteration) obtains 
successive approximation to its roots from the gradients (a hyper plane) at the 
approximate root points on the hyper surface, for example, if we have to solve 

f(x) = 0, (19) 

where x is an N-dimensional column vector of the roots to Eq. (19) and f(x) is a 
column vector of the N simultaneous non-linear equations that are to be satisfied. In 
the Newton iteration for the roots of Eq. (19), the v + lth iteration is given by 

X I’+ 1 = x1’ - [f’(x”)] - ‘qq, (20) 

where f’(x”) is the first derivative of f with respect to x and is an N x N matrix with 
element (i, j) equal to afi/laxj and f(x”) is a column vector containing the values f for 
given approximate roots xv. The convergence of Eq. (20) will depend on the initial 
guess x0 and on the gradients f’. If the initial approximation to x is very near a root 
and if the gradients in this region are continuous and smoothly varying, the 
convergence to the root will be very rapid. In Eq. (20) one has to calculate the 
inverse of the matrix f’(x”) at each iteration, which may be very expensive, especially 
if the size of the matrix is large. However, for the present system (Eq. (17)), the 
gradient f’(x”) is a slowly varying function of x near a root and one can use the 
initial gradient throughout the iteration, thus saving the time’ for calculating more 
than the first matrix inverse of f’(x”). This will, of course, slow down the convergence 
but the overall efficiency will be better. An iterative method based on this idea has 
been used by Ryckaert et al. [ 121 to solve Eqs. (17) and (18) (henceforth this method 
will be called method I). 

If instead of using the constaint Eq. (3) we use Eq. (6), then 

ck=dij-Iri-rj/, 
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we get 
C/(=(r~(n+1)+6ri(n+1)-r~(n+1)-6rj(n+1)~-dij=0, C-21) 

which can also be solved by using the above iterative procedure (henceforth this 
method will be called method II). Although method II requires square root 
calculation (Eq. (21)) it is more efficient than method I because for a given accuracy 
method II converges faster. The right-hand side of Eq. (21) constitutes a hyper 
surface whose gradients vary less rapidly with 6ri than the gradients of the hyper 
surface constructed by method I from Eq. (17). Therefore in method II one can use 
the constant initial gradient approach more effectively. A quantitative comparison of 
these two methods is carried out by simulating a system of water molecules. 

4. COMPARISON OF THE METHODS 

A water molecule can be regarded as two hydrogen atoms and one oxygen atom 
rigidly bonded together and the length of bonds O-H and H-H constant. Here we 
shall apply the constraint dynamics method based on method I and method II to 
simulate a system of 128 water molecules. In addition to constraint forces the oxygen 
and hydrogen atoms are regarded as doubly and singly charged soft spherical ions, 
respectively. The interionic force law used in the calculation has the following form 
[ 161: 

qrij) = y 
0 [ 

1 + SigIl(qiqj) (Oi T,T’], 
lJ 

TABLE I 

The Parameters Used in the Simulation of Water Molecules to Test 
the Numerical Accuracy of the Model 

(22) 

Parameter 

O-H bond length, B,, 
H-H bond length, B,, 
H6H bond angle, 0 
charge of hydrogen ion, q, 
charge of oxygen ion, q2 
mass of hydrogen ion, m, 
mass of oxygen ion, m2 
hardness parameter, p 
redius ratio oo/uH 
equilibrium separation, oD + o0 
equilibrium separation, u,, + oh 

equilibrium separation, oh + oh 
timestep, DT 

Value 

0.9584 ii 
I.5151 A 
104.45” 
0.3298e 
-0.65966e 
I.0 
16.0 
8 
0.4545 
0.96 A 
1.536 /i 
2.112 A 
3 x lo-i6 set 

Note. e is the absolute value of the electronic charge N 1.602 x IO-i9 coulombs and masses are 
given in units of atomic weight. 
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where qi and ui are the charge and hard sphere radius of the ion i and p measures the 
strenth of repulsion. All the parameters used in the present calculation are given in 
Table I. 

A flowchart for the constraint dynamics computer program is shown in Fig. 1. We 
start with a random configuration of water molecules, where each molecule exactly 
satisfies the bond constraints. All starting velocities are initialized to zero. Then the 
following steps are followed for each timestep cycle (using numbering of Fig. 1): 

2. The force on each ion due to all other ions is calculated by using the force 
law equation (22) and unconstrained velocities are calculated (Eq. (14)). 

3. A molecule is selected and unconstrained position of each atom is 
calculated (Eq. (15)). Procedure “ADJUST,” which calculated yk from the current 
unconstrained and previous constrained positions, is called. (Eq. (11)). Details of 
“ADJUST” for method I and method II are different and will be discussed later in 
this section. 

velocities i (n+i) from 

-Do for all molecule 
steps 3 to 5 

Calculate unconstrained 

positions of all the atoms 

in the molecule; ri(n+l) 

from eq. (15) 

'Qn+l) from eq. (10) 

_f7 Return to step 2 for new 

L timestep cycle -i 

FIG. 1. Flowchart of constraint dynamics program. 
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4. Constraint forces constructed from yk are used to calculate the constrained 
velocities (Eq. (13)). 

5. Constrained positions are calculated from these velocities using Eq. (15). 

Steps 3 to 5 are repeated for all the molecules. For the next timestep the current 
velocities and positions are used in step 2. 

4.1. Procedure “ADJUST’ 

For a water molecule to have constant O-H bond length and constant H-O-H 
bond angle we need three bond constraints. If the positions of the hydrogen and 
oxygen atoms are ry , ry and ri at any given timestep they must conform to: 

and 

/ ry - r: ] = B,, (bond length H-H) 

] ry - ri 1 = B,, (bond length O-H), 

]r!--ri]=B,,. 

Application of method I (Ryckaert et al. [ 121) to a water molecule (Eq. (17) and 
(18)) gives the following set of equations: 

(r; + 6r, -r; - dr,)’ - BiH = 0, 

(r; + dr, - r; - dr,)’ - Bi, = 0, 

(r; + Jr, - r\ - 6r,)2 - BiH = 0, 
and 

hi = l/mi C gij(rP - r;), (23) 

where rp = r,(n), constrained positions at timestep n. 
Following Ryckaert et al. [ 121 we have introduced g, = -2(dt)‘y,, which is the 

contribution of the kth constraint (between particle i and j) to the displacement 6ri. 
We note that gij = gii and gii = 0; altogether we shall have three unknowns, glz, g,, 
and g,,. For ease of the iterative calculation we expand Eqs. (23) and write them in a 
matrix form: 

S + 2Ag + W( g’) = 0, (24) 

where 

(26) 
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and 

A- 

0 r;* 1 -r13 0 1 PlZrlZ * 0 

m, 
* r;* 

m2 
r23 . r’12 

1 0 
- r12 . ri3 

0 1 
Pl3'13 r;3 

0 
. 

4 
-r23 . 

m3 
ri3 

1 
- r" 

1 0 0 
- 12 * r;3 - + 
m2 m3 

r13 G3 p23 r23 e ri3 

> (27) 

where 

rij = ri - rj, 

m, = m, = mass of the hydrogen atom, 

m3 = mass of oxygen of atom and W is a vector whose elements 

are quadratic function of g’s. 

To solve Eq. (24) we have used the iterative procedure suggested by Ryckaert et al. 
112 1, where the vth iterated value {g”) is obtained by solving linearized equation 
derived by substituting (g”-I} values in the quadratic term. This may be shown to be 
the same as using the Newton iteration with a constant gradient (the initial one) in all 
iterations. 

Similarly using method II (Eq. (21)) we get a set of non-linear equations: 

JK2 + Jr, - &,) e (r’,2 + 6r, - dr,) - B,, = 0, 

d(r;, + Jr, - dr,) . (r’,3 + 6r, - ik,) -B,, = 0, 

J(r;, + 6r2 - dr,) . (ri3 + Jr, - dr,) -B,, = 0, 

and 

6ri = k z g,iiq, 
I J 

(28) 

where i, = (rp - r;)/lrF - rji and “hat” on the position vectors denote unit vectors. 
These equations, when Taylor expanded and written in matrix form, become: 

where 

Ag + 0( g’) = 0, 

-B,, + jr: - r;l 

-B,, + /r; -r;I 

-B,, + lr;--r;/ 

(29) 

(30) 
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-0 
P12~12 * i;* 

1 
-iy3. ri2 

1 

ml 
--ri3. ri2 

m2 

1 
-iy2 * Pi3 -0 1 "0 

ml 
ru13r13. i;3 -f23 l3 . f’ 

m3 

1 "0 . ii3 
1 

--r -0 

m2 
12 -r13 

m3 
* iy3 "0 

iu23r23 . C3 

(31) 

As compared to Eq. (27), here in Eq. (3 1) all the position vectors are replaced by 
corresponding unit vectors. We have used two iterative schemes to solve Eq. (29). In 
the first method (IIa, (gut’} at v + Ith iteration is calculated from the linearized 
equation (29) using ( g”) values in the non-linear part of the equation and A -’ is 
calculated at each iteration. The iterations continue until all the components of S lie 

Method IIa 

Method IIb 
I 

FIG. 2. Flowchart of Procedure “ADJUST,” methods Ha and 1Ib. 
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within the desired accuracy, DEPS. In the second method (IIb) the inverse matrix 
A -’ is calculated only during the first iteration and the rest of the process is carried 
out as before. Thus if Eq. (28) is formally written as 

f(g) = 0, 

the iterative method IIa can be described as 

g M+‘=gL (f’(gN)}-‘f(f), 

where f(g”) = S (Eq. (30)) and f’(f) = A (Eq. (3 1)). Similarly method IIb can be 
described as 

g Iv+’ = s” - {f’(g”)}-If(f). 

It is important to note here that the value of T’ in these calculation are updated at 
each iteration by r’ + L%(f). A flowchart for these two methods is given in Fig. 2. 

-1 - 

-2 - 

-3 - 

0 
::-G - 
d 
cc 
g-5 - 
w 

-6 - 

-7 - 

-8 - 

\ 
L 

\ I 

\ 

\ 

\ 
IIa 

\ . 

\ . 

\ 
t 

0 1 2 3 L 5 6 7 8 9 10 

ITERATION 

FIG. 3. Convergence of “ADJUST” methods percentage error at each iteration. 
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TABLE II 

Relative Efficiency of “ADJUST” 

Time for matrix inversion 
(1O-4 set) 

Total time 
(lOm’sec) 

Method I 6 10 28 
Method IIa 7 4 30 
Method IIb 7 5 20 

4.2. Comparison of method I and method II 

We have simulated three water systems using the same initial conditions but 
different “ADJUST” procedures (as defined above) on the CDC 7600. The 
constraints in each calculations are fulfilled to an accuracy, DEPS = lop9 * bond 
length. The positions and velocities in each simulation were found to be in complete 
agreement up to eleven decimal places. By measuring the time taken by each 
“ADJUST” procedure to calculate the constraint forces we found method IIb to be 
the most economic. For the sake of comparison, in Fig. 3 we have plotted the error in 
bond length against the number of iterations for all three procedures. Here we see the 
Ryckaert et al. [ 121 method (I) takes ten iterations to achieve an accuracy of the 
order 10m9 of the bond length whereas the new methods IIa and IIb take four and 
five iterations, respectively, to achieve the same accuracy. The same unconstrained 
and constrained positions were used in all these calculations. Although method IIa 
takes fewer iterations it is about 50% slower than method IIb be’cause each matric 
inversion takes a comparatively large amount of time. In Table II we have given the 
time statistics for all three methods. The time taken to perform each matrix inversion 
including the calculation of its elements is 6 psec for method I, compared with 7 psec 
for method II; in the latter, calculation of each element requires an additional division 
operation to calculate the unit vectors (Eq. (31)). The total time for performing the 
calculation for a single moiecule by method I is about 0.8 msec more than the time 
taken by method IIb. 

5. CONCLUSIONS 

The results of the above section clearly show that the most efficient and economic 
“ADJUST” procedure is method IIb. This procedure is based on the constraint 
equation 

cij = ) ri - rj 1 - d, 

and uses a single matrix inversion method for the iterative solution. All of the 
methods discussed here are found to be equivalent with regard to the calculations of 
positions, velocities and thermodynamic quantities. The conservation laws, e.g., total 
energy, momentum and angular momentum, etc., are also satisfied. 
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